Influence of respiratory network drive on phrenic motor output evoked by activation of cat pre-Botzinger complex.

نویسنده

  • Irene C Solomon
چکیده

We have previously demonstrated that microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-Bötzinger complex (pre-BötC) can produce either phasic or tonic excitation of phrenic nerve discharge during hyperoxic normocapnia. Breathing, however, is influenced by input from both central and peripheral chemoreceptor activation. This influence of increased respiratory network drive on pre-BötC-induced modulation of phrenic motor output is unclear. Therefore, these experiments were designed to examine the effects of chemical stimulation of neurons (DLH; 10 mM; 10-20 nl) in the pre-BötC during hyperoxic modulation of CO2 (i.e., hypercapnia and hypocapnia) and during normocapnic hypoxia in chloralose-anesthetized, vagotomized, mechanically ventilated cats. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-BötC during baseline conditions of hyperoxic normocapnia [arterial PCO2 (PaCO2) = 37-43 mmHg; n = 22] produced a tonic (nonphasic) excitation of phrenic nerve discharge. During hypercapnia (PaCO2 = 59.7 +/- 2.8 mmHg; n = 17), similar microinjection produced excitation in which phasic respiratory bursts were superimposed on varying levels of tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.01). In contrast, during hypocapnia (PaCO2 = 29.4 +/- 1.5 mmHg; n = 11), microinjection of DLH produced nonphasic tonic excitation of phrenic nerve discharge that was less robust than the initial (normocapnic) response (i.e., decreased amplitude). During normocapnic hypoxia (PaCO2 = 38.5 +/- 3.7; arterial Po2 = 38.4 +/- 4.4; n = 8) microinjection of DLH produced phrenic excitation similar to that seen during hypercapnia (i.e., increased frequency of phasic respiratory bursts superimposed on tonic discharge). These findings demonstrate that phrenic motor activity evoked by chemical stimulation of the pre-BötC is influenced by and integrates with modulation of respiratory network drive mediated by input from central and peripheral chemoreceptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo.

Microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-Bötzinger complex (pre-BötC) can produce tonic excitation of phrenic nerve discharge. Although this DLH-induced tonic excitation can be modified by systemic hypercapnia, the role of focal increases in pre-BötC CO(2)/H(+) in this modulation of the DLH-induced response remains to be determined. Therefore, we examined th...

متن کامل

Orexin stimulates breathing via medullary and spinal pathways.

A central neuronal network that regulates respiration may include hypothalamic neurons that produce orexin, a peptide that influences sleep and arousal. In these experiments, we investigated 1) projections of orexin-containing neurons to the pre-Botzinger region of the rostral ventrolateral medulla that regulates rhythmic breathing and to phrenic motoneurons that innervate the diaphragm; 2) the...

متن کامل

Modulation of gasp frequency by activation of pre-Bötzinger complex in vivo.

Under hyperoxic conditions, both chemical stimulation of neurons and focal hypoxia in the pre-Bötzinger complex (pre-BötC) in vivo modify the eupneic pattern of inspiratory motor output by eliciting changes in the patterning and timing of phrenic bursts, which includes both phasic and tonic excitation. The influence of this region on the gasping pattern of phrenic motor output produced during s...

متن کامل

Ionotropic excitatory amino acid receptors in pre-Botzinger complex play a modulatory role in hypoxia-induced gasping in vivo.

Activation of ionotropic excitatory amino acid (EAA) receptors in pre-Bötzinger complex (pre-BötC) not only influences the eupneic pattern of phrenic motor output but also modifies hypoxia-induced gasping in vivo by increasing gasp frequency. Although ionotropic EAA receptor activation in this region appears to be required for the generation of eupneic breathing, it remains to be determined whe...

متن کامل

Hypothermia and recovery from respiratory arrest in a neonatal rat in-vitro brainstem preparation

This study was designed to examine the possibility that respiratory arrest during hypothermia occurs at the level of premotor or motor neurons rather than at the level of the central rhythm generator itself. Specifically, we sought to determine the consequences of hypothermic cooling until respiratory arrest, and subsequent rewarming, on neurons in the pre-Bötzinger Complex, as an indication of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 284 2  شماره 

صفحات  -

تاریخ انتشار 2003